A METHOD FOR SIMULATING ELECTRICALLY MOVING
TEMPERATURE FIELDS

L. A, Kozdoba UDC 536,12:681,142,334

A simplified method, by comparisonwiththat of [1], is given for simulating moving temperature
fields using ohmic resistance electric network simulators.,

The general form of the Kirchhoff —Fourier equation for nonstationary thermal conductivity in a mov-
ing medium is
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where vy, Vg, Vg are velocity components of the motion of the medium at a given point,

The equation of the temperature field, referred to coordinates moving with velocity v, in the direc-
tion of the x-axis when A, ¢, y, v; = —vx are constants, is a particular case of (1) but is of sufficiently wide
application in studying heat-transfer processes in welding and melting, continuous sequence heat treatment,
mechanical material treatment, etc, With the above assumptions, Eq. (1) can be written
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The initial and boundary conditions of the I—IV kind can be written in the same way as for a fixed
coordinate system,

In [1] a method was given for simulating the solution of (2) electrically on ohmic resistance networks
(R-networks), when the following substitution was used to deduce the parameters of the R-network:

T = ugp, (3)
where
cp:exp(_M>. (4
2a
Then, from (2) we can obtain
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If we put
T =U0, (6)
where
vx vt
®=exp|—2— 0 |, 7
p( 2a 4a ) M

from (2) we can obtain the simpler equation
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Fig.1. Diagram of an elementary volume (a) and the nodes of an
R-network for simulating the solution of (2) electrically.
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i.e., there is no additional heat sink ((vi/4a%u), which simplifies the construction and use of an electrical
model. The boundary conditions of the I-IV kind correspondingly take the form

Us.n = Une n» (9)

6;/’: o, + .6;25 Uy + - =0, (10)

Vs 0, 225U, + L Upe Qe UyD,) =0, (1)
x(a;‘q)+a®sU)+x(a““e®+a®sU) o, (12)

where the subscripts s and me refer to the surface and the medium, The remaining notation is in commonuse,

If we write (8)~(12) in finite difference form, as in [2], and compare with the expressions of Kirchhoff's
law for the currents at the nodes of R-networks, we obtain an expression for calculating the parameters of
the R-network which solves the system (8)-(12).

From the values of U which have been found, we can use (6) and (7) to determine T,

The determination of T can be simplified if the network parameters are computed so that we can ob-
tain the values of T directly from the R-network,

We write Eq. (8) in finite difference form and for U we substitute its value from (6) (at the same time
3 2

we multiply all the terms of the finite difference equations by [T ¥, hjk and cancel common factors)
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where the hy are space intervals on both sides of the node 0 (see Fig.1); the axis x —i = 1; the axis y — i
= 2; the axis z —i = 3, The time is t = nét. In general the time interval 6t may change during the solution,

The corresponding finite difference expressions for the boundary conditions of the II and III kind are:
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where hy, is the space interval along the normal to the surface (hy, is equal to that h;) which approaches
the node on the surface from the side of the body).

If there is to be similarity between (13)-(15) and the expressions for Kirchhoff's law for the currents

flowing into the corresponding nodes of the R-network, it is necessary that the parameters of the R-network
should be as follows:
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where the resistances Ryq, . . . , Ry correspond to the space intervals hy;, ..., hy (see Fig,1) and simulate
the thermal heat conduction resistance; Ry is the resistance through which passes the current simulating
3 2
heat absorption or emission by the due to the heat capacity of an elementary volume II 3 hjk in a time in-
=1 k=1
terval 6t. One end of the resistance Ry is attached to the node, the other to a voltage divider from which the
voltage V n-; is taken,

At the second end of the resistance Ry, voltage Vyy is applied to R(';. It Vi > Vo,n, when w, q are
heat sources, or V| < Vg, when w, q are heat sinks, instead of (Vyy — Vo n) in the expressions for Ry, Rq
we may put Vy;. K is the scale of the transition from temperature to voltage:
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For given boundary conditions of the I kind, voltages are applied to the nodes corresponding to Tg.
At the free end of the resistance R}, a voltage is applied corresponding to the temperature Ty, of themedium,
At the free ends of the resistances Ra and R}, the minimal voltage Vi = 0 is applied. I Tye = 0 then
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For given boundary conditions of the IV kind, the networks simulating the bodies in contact are joined
to each other,

1f 8d>s/ dnyy, = 0, which occurs if the normal to the surface lies in the plane perpendicular to the x-axis,
the boundary conditions of the II and III kind are simulated using only the resistances R}, and R',
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The accuracy of the solution depends on the ratios &,/®; and &,/®,; the closer they are to unity, the
higher is the accuracy. The ratios &,/®; and &,/®,—1 for hy; = const and x—« or hy — 0 and x = const,
i.e., for network nodes with small values of x we have to choose appropriately small values of h1k and for
nodes with large values of x, the intervals h; and h, can be increased,

A gimilar discussion holds for <I>0,n_.1/ ®o,n.

In solving problems with moving concentrated heat sources the origin is linked to the position of the
sources,

The quasistationary situation, when 8T/8t = 0 was discussed in [1].

In a similar manner the parameters of the R-network can be deduced for the original set of equations
in nondimensional form,

If it cannot be assumed that A, c, y, v are constant, the solution of Eq, (1) in the most general formula-
tion can be obtained by complicating the technique of solving on an R-network or by a combined model using
the general method of [2], or on a special quasianalog model developed in [3, 4].
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