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A simplified me thod ,bycompar i sonwi th tha t  of [1], is given for simulating moving tempera ture  
fields using ohmic re s i s t ance  electr ic  network s imula tors .  

The general  fo rm of the K i r o h h o f f - F o u r i e r  equation for nonstat ionary thermal  conductivity in a mov-  
ing medium is 

div(s 72-,, - ~ T ' , 0 T  OT)  + w = o ,  (1) 

where Vx, Vy, v z are  velocity components of the motion of the medium at a given point. 

The equation of the tempera ture  field, r e fe r red  to coordinates  moving with velocity v 0 in the d i rec -  
tion of the x-axis  when X, c, y, v 0 = - v  x are  constants,  is a par t icular  case of (1) but is of sufficiently wide 
application in studying hea t - t r ans fe r  p rocesses  in welding and melting, continuous sequence heat t reatment ,  
mechanical  mater ia l  t reatment ,  etc. With the above assumptions,  Eq. (1) can be written 

O~T 02T O~T 1 OT v o OT w 
Ox" + - -  + - -  + -  O, 

- -  OV ~ Oz ~ a Ot + - - a ~ - x  ~. = ( 2 )  

The initial and boundary conditions of the I - I V  kind can be written in the same way as for a fixed 
coordinate sys tem.  

In [1] a method was given for simulating the solution of (2) e lectr ical ly  on ohmic res i s tance  networks 
(R-networks), when the following substitution was used to deduce the pa ramete r s  of the R-network:  

T = uqg, (3) 

where 

= exp [ - -  v~ ~ .  (4) q~ 
t 2a ] 

where 

Then, f rom (2) we can obtain 

O~u 02u 02u v 2 1 Ott w 
- -  u + - - -  = 0 .  

Ox 2 ~-�9 Oy 2 + Oz ~ 4a 2 a Ot Xq~ 

If we put 

(5) 

T = u o ,  (6) 

( vox v 2 t l ,  
�9 = exp 2a -~-a] (7) 

f rom (2) we can obtain the s impler  equation 
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Fig. 1~ Diagram of an e lementa ry  volume (a) and the nodes of an 
R-ne twork  for  s imulat ing the solution of (2) e lec t r ica l ly .  

02U OuU OW 1 OU w 
Ox ~ + 7v ~ ~ Oz ~ a ot + ~ = o, (8) 

i .e. ,  there  is no additional heat  sink ((v20/4a2)u), which s impl i f ies  the construct ion and use  of an e lec t r i ca l  
model .  The boundary conditions of the I - I V  kind cor respondingly  take the fo rm 

Us.,, = Um~.l., (9) 

3(D:s U q OUs Os + + = 0, (10) 
On O n  s ~ 

+ OOs a dUs (I) s U s + (Urne(I)mc-UsOs) = 0, (11) 
0n ~ T 

[ OU~ �9 
On s) = O, (12) an } \ On 

where  the subscr ip t s  s and me r e f e r  to the su r face  and the medium.  The remain ing  notation is in e o m m o n u s e .  

If we wr i te  (8)-(12) in finite di f ference form,  as in [2], and compare  with the express ions  of Kirchhoff ' s  
law for  the cur ren t s  at the nodes of i t -ne tworks ,  we obtain an express ion  for  calculat ing the p a r a m e t e r s  of 
the R-ne twork  which solves  the s y s t e m  (8)- (12). 

F r o m  the values of U which have been found, we can use  (6) and (7) to de te rmine  T. 

The de terminat ion  of T can be s implif ied if the network p a r a m e t e r s  a re  computed so that we can ob-  
tain the values of T di rec t ly  f r o m  the R-ne twork .  

We wri te  Eq. (8) in finite di f ference f o r m  and for  U we subst i tute  its value f rom (6) (at the s a m e  t ime 
3 2 

we multiply all the t e r m s  of the finite difference equations by n ~ hik and cancel common fac tors)  
i = I  k = l  

l l  2 
0~ --  T..~ 17 X hik 2 Tz,~, (I)2 2 ,Tl"n (TDLa i ~ 2 , 3  k = l  �9 i ~ 2 , 3  k = l  

h11(1)o, r, "q- hl~:(~o, r~ 

2 2 

2 (v~,. - To,,,) H ~:  h,~ 2(:r,. ~ - vo,.) I-I ~ h,~ 
i = 1 , 3  k : l  i = 1 , 3  k ~ l  

+ h21@o,,, + h22~o,,~ 
2 2 

2 (v~.. - Vo, o) I-I Y,  h,~ 2 (vo,. - To..) H Y, h,~ 
t : ~ l , 2  k = l  _~_ i ~ 1 , 2  k = l  

hal(I)o, n hazq) om 

T~ (I)o, n--1 i = l  k = l  t '= l  k = l  
+ --0,  

a6t~o.~, ;Ld9o,,~ 

+ 

+ (13) 
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where the hik are  space intervals on both sides of the node 0 (see Fig. l); the axis x - i  : 1; the axis y - i  
= 2; the axis z - i = 3. The time is t = n6t. In general  the time interval 6t may change during the solution. 

The corresponding finite difference expressions for the boundary conditions of the II and III kind are:  

Ts __ Tn ~ (Ds, r, 
..... . O~ s Ts q 

+ - -  -[- -~- = 0, (14) 
h.~ On.~ (I) s 

T (1)s'" 
Ts - -  yr~ - -  

(I) . . . .  06) s T s a 
+ - - +  ~ - (T in - -T , )=0 ,  (15) 

hra On~ (Ps,,~ 

where h m is the space interval along the normal  to the surface {h m is equal to that hik which approaches 
the node on the surface  f rom the side of the body). 

If there is to be s imi lar i ty  between (13)-(15) and the expressions for Kirchheff 's  law for  the currents  
flowing into the corresponding nodes of the R-network,  it is neces sa ry  that the pa rame te r s  of the R-network 
should be as follows: 

~11 = hl~(I )~  
2 

2H h,  
~2,3 k~! 

a6t(I) o, , 
~ t  3 2 

/~32(]) O, r~ 
R N ,  R 3 2 -  2 R N ,  

2[-I X h,k 
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R N ,  R w = 3 2 

rl z  l-l Z 
~'~1 k~l  i=1 k=l  

R N ,  

h~hq O@s ' 
Onto hik 

(16) 

On m 

where the res i s tances  R l l  , . . . , R3~ correspond to the space intervals hll . . . .  , h32 (see Fig. 1) and simulate 
the thermal  heat conduction res i s tance ;  R t is the res i s tance  through which passes  the current  simulating 

3 2 
heat absorption or emission by the due to the heat capacity of an e lementary volume H E hik in a time in- 

i= I  k~ l  

terval  6t. One end of the res i s t ance  R t is attached to the node, the other to a voltage divider f rom which the 
voltage V0,n_ 1 is taken. 

At the second end of the res i s t ance  Rw, voltage V M is applied to R~. If V M >> V0,n, when w, q are  
heat sources ,  or V M << V0,n, when w, q are  heat sinks, instead of (V M - V0,n) in the expressions for Rw, Rq 
we may put V M. K is the scale  of the transit ion f rom tempera ture  to voltage: 

T m a x -  Train 
K -  

Vmax --V~i. 

For given boundary conditions of the I kind, voltages a re  applied to the nodes corresponding to T s. 
At the f ree  end of the res i s tance  R~ a voltage is applied corresponding to the tempera ture  Tme of themedium.  
At the f ree  ends of the res i s tances  R~ and R~ the minimal voltage VM = 0 is applied. If Tme = 0 then 

a-;2jj 
For given boundary conditions of the IV kind, the networks simulating the bodies in contact are  joined 

to each other.  

If 8@s/0n m = 0, which occurs  if the normal  to the sur face  lies in the plane perpendicular  to the x-axis ,  
! the boundary conditions of the II and III kind a re  simulated using only the res i s tances  R~ and Rq. 
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The accu racy  of the solution depends on the ra t ios  ~0/4~1 and ~0/~2; the c lose r  they a r e  to unity,  the 
higher  is the accu racy .  The ra t ios  4~0/4~ 1 and 4~0/~2~1 for  htk = const and x-~.o or  h l k ~  0 and x = const ,  
i .e . ,  for  network nodes with smal l  values  of x we have to choose appropr ia te ly  smal l  values  of hlk and for  
nodes with l a rge  values  of x, the in tervals  h i and h 2 can be inc reased .  

A s i m i l a r  d iscuss ion holds for  @0,n_l/~0,n. 

In solving p rob lems  with moving concentra ted heat  sources  the origin is linked to the posi t ion of the 
sou rces .  

The quas is ta t ionary  si tuation,  when 3T/St  = 0 was d iscussed  in [1]. 

In a s i m i l a r  manner  the p a r a m e t e r s  of the R-ne twork  can be deduced for  the or iginal  se t  of equations 
in nondimensional  f o rm .  

If it cannot be  a s sumed  that ~, c, ~/, v a r e  constant ,  the solution of Eq. (1) in the mos t  genera l  f o r m u l a -  
tion can be obtained by compl ica t ing the technique of solving on an R-ne twork  or by a combined model using 
the genera l  method of [2], or  on a specia l  quasianalog model developed in [3, 4]. 
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